Effect of renal medullary H2O2 on salt-induced hypertension and renal injury.

نویسندگان

  • Norman E Taylor
  • Allen W Cowley
چکیده

Dahl salt-sensitive (SS) and consomic, salt-resistant SS-13(BN) rats possess substantial differences in blood pressure salt-sensitivity even with highly similar genetic backgrounds. The present study examined whether increased oxidative stress, particularly H2O2, in the renal medulla of SS rats contributes to these differences. Blood pressure was measured using femoral arterial catheters in three groups of rats: 1) 12-wk-old SS and consomic SS-13(BN) rats fed a 0.4% NaCl diet, 2) SS rats fed a 4% NaCl diet and chronically infused with saline or catalase (6.9 microg x kg(-1) x min(-1)) directly into the renal medulla, and 3) SS-13(BN) fed high salt (4%) and infused with saline or H2O2 (347 nmol x kg(-1) x min(-1)) into the renal medullary interstitium. After chronic blood pressure measurements, renal medullary interstitial H2O2 concentration ([H2O2]) was collected by microdialysis and analyzed with Amplex red. Blood pressure and [H2O2] were both significantly higher in SS (126 +/- 3 mmHg and 145 +/- 17 nM, respectively) vs. SS-13(BN) rats (116 +/- 2 mmHg and 56 +/- 14 nM) fed a 0.4% diet. Renal interstitial catalase infusion significantly decreased [H2O2] (96 +/- 41 vs. 297 +/- 52 nM) and attenuated the hypertension (146 +/- 2 mmHg catalase vs. 163 +/- 4 mmHg saline) in SS rats after 5 days of high salt (4%). H2O2 infused into the renal medulla of consomic SS-13(BN) fed high salt (4%) for 7 days accentuated the salt sensitivity (145 +/- 2 mmHg H2O2 vs. 134 +/- 1 mmHg saline). [H2O2] was also increased in the treated group (83 +/- 1 nM H2O2 vs. 44 +/- 9 nM saline). These data show that medullary production of H2O2 may contribute to salt-induced hypertension in SS rats and that chromosome 13 of the Brown Norway contains gene(s) that protect against renal medullary oxidant stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRANSLATIONAL PHYSIOLOGY Effect of renal medullary H2O2 on salt-induced hypertension and renal injury

Taylor, Norman E., and Allen W. Cowley, Jr. Effect of renal medullary H2O2 on salt-induced hypertension and renal injury. Am J Physiol Regul Integr Comp Physiol 289: R1573–R1579, 2005. First published August 18, 2005; doi:10.1152/ajpregu.00525.2005.—Dahl salt-sensitive (SS) and consomic, salt-resistant SS-13 rats possess substantial differences in blood pressure salt-sensitivity even with highl...

متن کامل

Control of renal Na+ excretion by heme oxygenase.

In the current issue of Hypertension, Li et al provide evidence that supports acute and chronic roles for renal medullary heme oxygenase (HO) in the regulation of salt and water excretion by the kidney.1 Their findings may be summarized as follows: HO activity and expression rises with medullary axis; inner medulla outer medulla cortex. Acute elevation of renal perfusion pressure (RPP) induces ...

متن کامل

Increased H(2)O(2) counteracts the vasodilator and natriuretic effects of superoxide dismutation by tempol in renal medulla.

A membrane-permeable SOD mimetic, 4-hydroxytetramethyl-piperidine-1-oxyl (tempol), has been used as an antioxidant to prevent hypertension. We recently found that this SOD mimetic could not prevent development of hypertension induced by inhibition of renal medullary SOD with diethyldithiocarbamic acid. The present study tested a hypothesis that increased H2O2 counteracts the effects of tempol o...

متن کامل

Novel role of fumarate metabolism in dahl-salt sensitive hypertension.

In a previous proteomic study, we found dramatic differences in fumarase in the kidney between Dahl salt-sensitive rats and salt-insensitive consomic SS-13(BN) rats. Fumarase catalyzes the conversion between fumarate and l-malate in the tricarboxylic acid cycle. Little is known about the pathophysiological significance of fumarate metabolism in cardiovascular and renal functions, including salt...

متن کامل

Increased renal medullary H2O2 leads to hypertension.

We have recently reported that exaggerated oxidative stress in the renal medulla due to superoxide dismutase inhibition resulted in a reduction of renal medullary blood flow and sustained hypertension. The present study tested the hypothesis that selective scavenging of O2*- in the renal medulla would prevent hypertension associated with this exaggerated oxidative stress. An indwelling, aortic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 289 6  شماره 

صفحات  -

تاریخ انتشار 2005